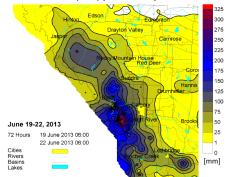
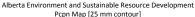
The June 2013 Alberta flooding event : Climatology, synoptic conditions and precipitation fields


Julie M. Thériault¹, Sudesh Boodoo², Ron Goodson³, Bob Kochtubajda³, Yanping Li⁴, Ronald Stewart⁵ and Kit Szeto²


¹Université du Québec à Montréal, Montréal, QC, Canada
 ²Environment Canada, Downsview, Ontario, Canada
 ³Environment Canada, Edmonton, Alberta, Canada
 ⁴University of Saskatchewan, Saskatoon, Saskatchewan, Canada
 ⁵University of Manitoba, Winnipeg, Manitoba, Canada

CCRN Canmore Workshop Tuesday 11 February 2014

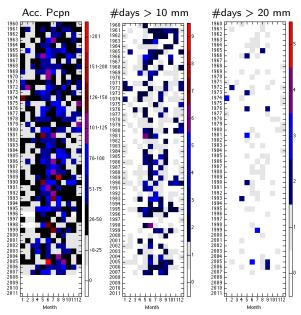
Introduction

- One of the most catastrophic event in the province history
- Produced more than 200 mm over a large area with localized maximum amount of > 300 mm
- Associated with severe weather in south-east Alberta

Theriault et al.

Goal of the presentation

- What is the climatology of precipitation occurrence in the Banff and Calgary Area ?
 - Accumulated precipitation
 - Number of days associated with > 20 mm and 10 mm


- What happened during this event?
 - Jet stream (250 hPa) and associate surface low pressure system analysis
 - Heaviest precipitation 00-06 UTC 20 June 2013
 - Temporal and spatial evolution of temperature and precipitation type fields

Climatology : Banff, Alberta

Banff, Alberta

Climatology [June 1971-2000]

Accumulated Precipitation : 61.7 mm Daily Extreme Rainfall : 50 mm

June 2005 ightarrow

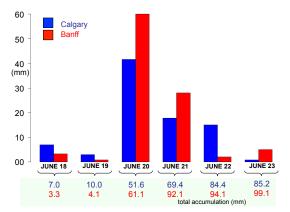
Theriault et al.

Climatology : Calgary, Alberta

Calgary, Alberta

Climatology [June 1971-2000]

Accumulated Precipitation : 79.8 mm Daily Extreme Rainfall : 79.2 mm


Acc. Pcpn #days > 10 mm #days > 20 mm

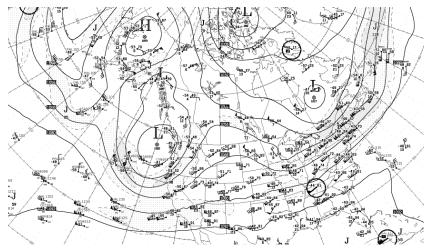
$$\frac{1}{3}$$
 $\frac{1}{3}$ $\frac{1}{$

June 2005 ightarrow

Theriault et al.

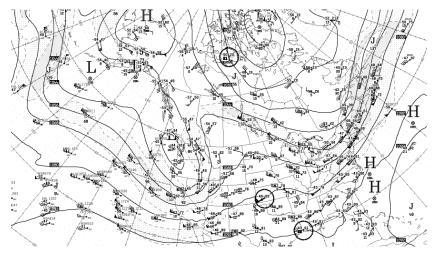
Precipitation accumulation

From Jason Milbrandt and Marcel Vallée


	Acc. Pcpn	> 10 mm	> 20 mm
Banff	99.1 mm	2	2
Calgary	85.2 mm	3	1

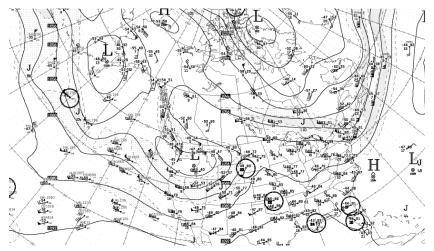
What happened during this event?

Preliminary analysis was conducted :


- 250 hPa conditions
- the propagation of the surface low pressure system
- vertical cross-section of the temperature and precipitation types

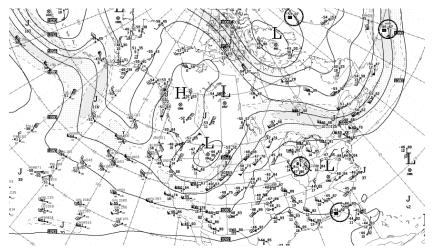
1200 UTC 18 June 2013 - 250 hPa

• Jet Streak on the upstream (downstream) of the trough will dig the trough (propagate trough northward).

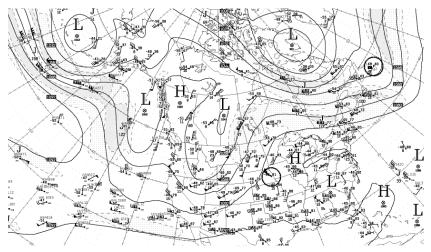

1200 UTC 19 June 2013 - 250 hPa

• Jet Streak downstream of the trough. The surface low pressure system south of Idaho.

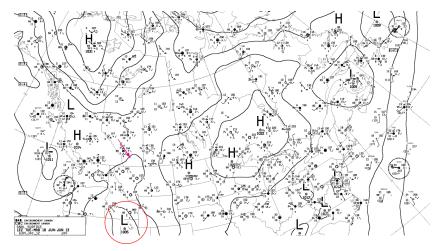
Theriault et al.


1200 UTC 20 June 2013 - 250 hPa

• Favorable synoptic forcing for ascent southeast of the Rocky Mountains. Heavy precipitation started at 0000 UTC 20 June 2013.

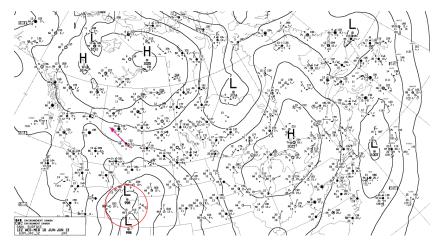

Theriault et al.

1200 UTC 21 June 2013 - 250 hPa


• Synoptic scale forcing aloft is decreasing over the area because it is now located under anticyclonic vorticity advection.

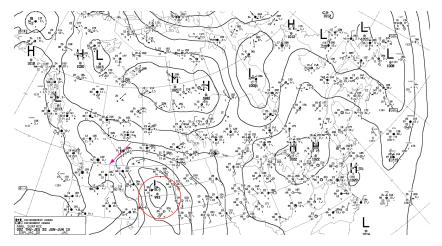
1200 UTC 22 June 2013 - 250 hPa

• Weather systems nearly stationary due to the long wavelength that increases the effect of planetary vorticity advection .


1200 UTC 18 June 2013 - Surface Analysis

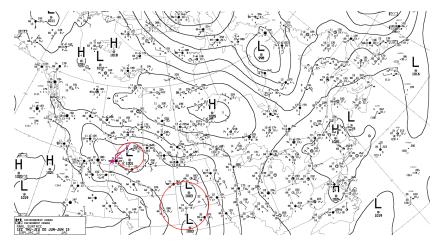
- Low pressure system south of Idaho.
- North-weasterly flow on the lee side of the Rocky Mountains.

Theriault et al.


1200 UTC 19 June 2013 - Surface Analysis

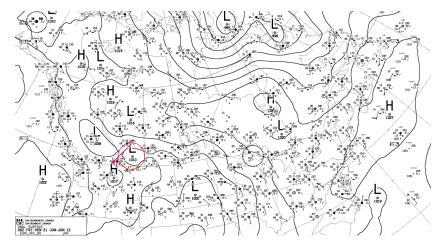
- Low pressure system \rightarrow deepened + propagated Northward
- Wind shifted \rightarrow South-easterly

Theriault et al.


0000 UTC 20 June 2013 - Surface Analysis

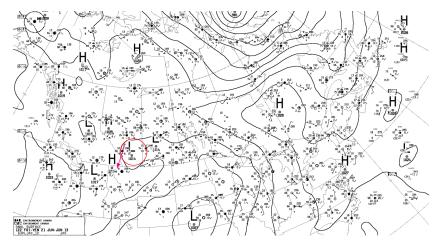
- Low pressure system \rightarrow deepened + propagated Eastward
- Wind shifted \rightarrow North-easterly [Precipitation started]

Theriault et al.


1200 UTC 20 June 2013 - Surface Analysis

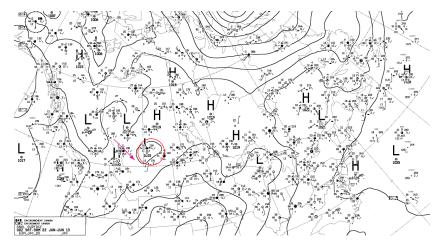
- Low pressure system split in 2 \rightarrow one located Southeast Alberta
- North-easterly wind [Heaviest precipitation : 0000-0600 UTC]

Theriault et al.


0000 UTC 21 June 2013 - Surface Analysis

- Low pressure system located Southeast Alberta
- North-easterly wind

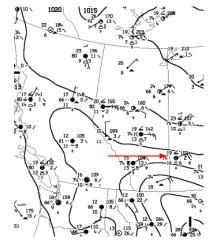
Theriault et al.


1200 UTC 21 June 2013 - Surface Analysis

- Low pressure system weaken \rightarrow synoptic forcing decreased aloft
- Wind shifted \rightarrow Northerly

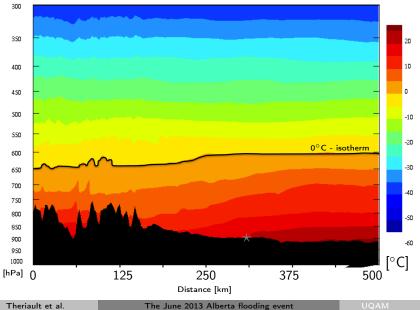
Theriault et al.

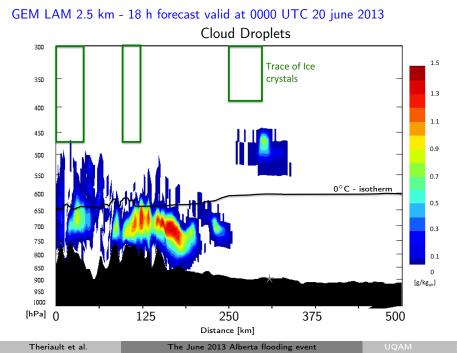
0000 UTC 22 June 2013 - Surface Analysis

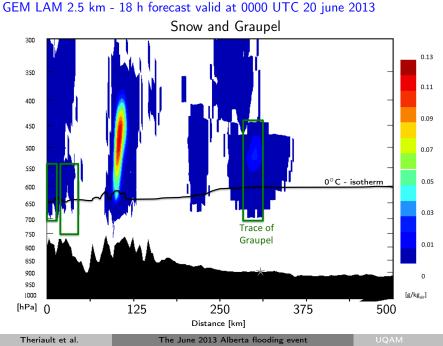


- Low pressure system weaken \rightarrow synoptic forcing decreased aloft
- Wind shifted \rightarrow Northwesterly

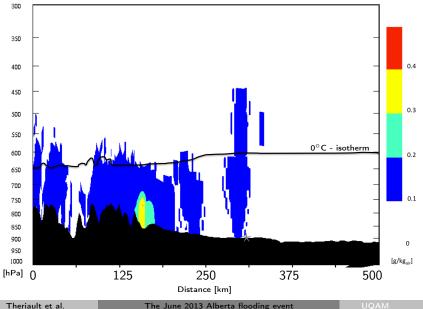
Theriault et al.

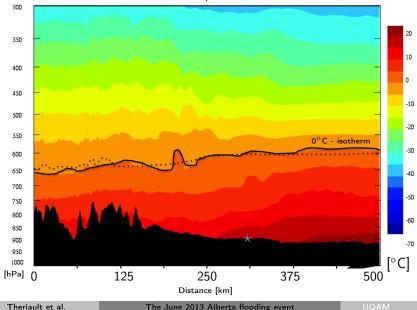

Temperature and precipitation type fields


- Used GEM LAM 2.5 km forecasts
- Analyzed vertical cross-sections along the lee side of the mountain
 - Evolution of the 0°C-isotherm and precipitation type formed
 - Focused at 0000-0600 UTC where the heaviest precipitation was recorded
- Compared precipitation fields with radar reflectivity



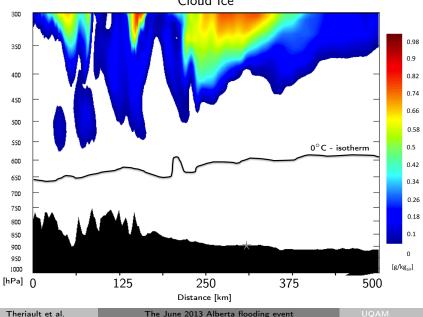
Location of the vertical cross-section


GEM LAM 2.5 km - 18 h forecast valid at 0000 UTC 20 june 2013 Temperature

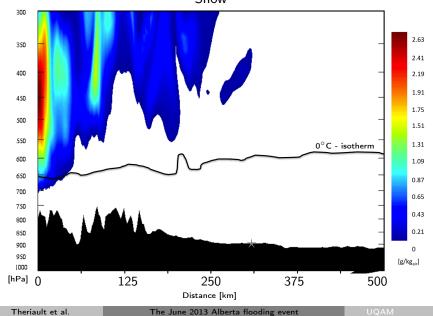


GEM LAM 2.5 km - 18 h forecast valid at 0000 UTC 20 june 2013 Rain

24

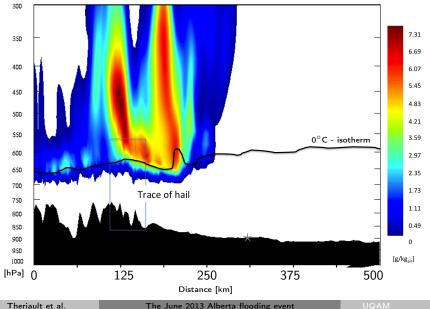


GEM LAM 2.5 km - 24 h forecast valid at 0600 UTC 20 june 2013 Temperature


Cloud Droplets 300 2.3 350 2.1 400 1.9 1.7 450 1.5 500 1.3 550 1.1 $0^{\circ}C$ - isotherm 600 0.9 650 0.7 700 0.5 750 0.3 800 0.1 850 0 900 [g/kg_{air}] 950 1000 [hPa] () 375 125 250 500 Distance [km]

GEM LAM 2.5 km - 24 h forecast valid at 0600 UTC 20 june 2013

Theriault et al.

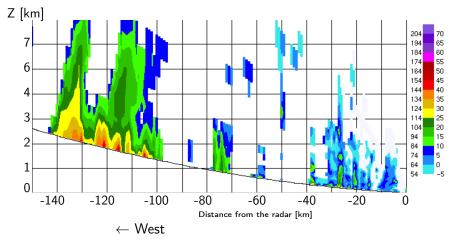


GEM LAM 2.5 km - 24 h forecast valid at 0600 UTC 20 june 2013 Cloud Ice

GEM LAM 2.5 km - 24 h forecast valid at 0600 UTC 20 june 2013 Snow

GEM LAM 2.5 km - 24 h forecast valid at 0600 UTC 20 june 2013 Graupel and Hail

-29

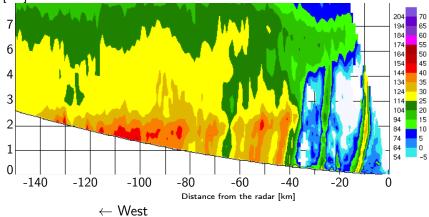

300 1.9 350 1.7 400 1.5 450 1.3 500 1.1 550 $0^{\circ}C$ - isotherm 0.9 600 0.7 650 0.5 700 750 0.3 800 0.1 850 900 0 950 [g/kg_{air}] 1000 [hPa] () 125 375 250 500

GEM LAM 2.5 km - 24 h forecast valid at 0600 UTC 20 june 2013 Rain

Distance [km]

Theriault et al.

Comparison with Radar Reflectivity – 0000 UTC



• High reflectivity values over the mountain - rain and cloud droplets were forecasted by the model

Theriault et al.

Comparison with Radar Reflectivity – 0600 UTC

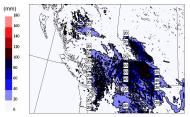
• Precipitation is present along the mountainside - rain, snow and graupel were forecasted by the model

Theriault et al.

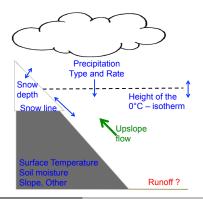
Preliminary conclusions

Climatology

- The maximum accumulated precipitation recorded in both Banff and Calgary was in June 2005 [Calgary : 9 days > 10 mm and 4 days > 20 mm].
- During the June 2013 event, accumulated precipitation from June 18-22 was more than monthly average.


Weather conditions

- Large scale forcing aloft produced favorable conditions for the formation of a surface low pressure system that produced upslope flow that persisted for 36 h.
- The height of the 0°C-isotherm stayed at 650 hPa during the event, which allowed complete melting of precipitation before reaching the surface.
- GEM LAM suggested rain at lower elevation and snow at higher elevation at 0000 UTC. The upslope flow produced cloud droplets that enhanced the conversion from snow to graupel.
- The location of maximum in radar reflectivity values correlated with the precipitation fields.


Theriault et al.

Questions

- Does the GEM-LAM 2.5 km forecasted the storm/flood accurately ? If not, what was missing and why ?
- What is the relative role of the other factors such as seasonal snow accumulation, height of the 0°C-isotherm, location of the snow-line on the severity of that event?
- How comparable was this event to other major event (June 2005, 2002)?

24 hours rainfall accumulation SHDPS forecasts valid for June 20 From J. Milbrandt and M. Vallée

